Friday, June 21, 2019

Scientist discovered a Cold Quasar , A new stage of Galaxy Death.

LAWRENCE — At the 234th meeting of the American Astronomical Society in St. Louis, Allison Kirkpatrick, assistant professor of physics & astronomy at the University of Kansas, will announce her discovery of “cold quasars” — galaxies featuring an abundance of cold gas that still can produce new stars despite having a quasar at the center. The breakthrough finding overturns assumptions about the maturation of galaxies and may represent a phase of every galaxy’s life cycle that was unknown until now.

A quasar, or “quasi-stellar radio source,” is essentially a supermassive black hole on steroids. Gas falling toward a quasar at the center of a galaxy forms an “accretion disk,” which can cast off a mind-boggling amount of electromagnetic energy, often featuring luminosity hundreds of times greater than a typical galaxy. Typically, formation of a quasar is akin to galactic retirement, and it’s long been thought to signal an end to a galaxy’s ability to produce new stars.
“All the gas that is accreting on the black hole is being heated and giving off X-rays,” Kirkpatrick said. “The wavelength of light that you give off directly corresponds to how hot you are. For example, you and I give off infrared light. But something that’s giving off X-rays is one of the hottest things in the universe. This gas starts accreting onto the black hole and starts moving at relativistic speeds; you also have a magnetic field around this gas, and it can get twisted up. In the same way that you get solar flares, you can have jets of material go up through these magnetic field lines and be shot away from the black hole. These jets essentially choke off the gas supply of the galaxy, so no more gas can fall on to the galaxy and form new stars. After a galaxy has stopped forming stars, we say it’s a passive dead galaxy.”
Kirkpatrick’s survey, about 10 percent of galaxies hosting accreting supermassive black holes had a supply of cold gas remaining after entering this phase and still made new stars.
“That in itself is surprising,” she said. “This whole population is a whole bunch of different objects. Some of the galaxies have very obvious merger signatures; some of them look a lot like the Milky Way and have very obvious spiral arms. Some of them are very compact. From this diverse population, we then have a further 10 percent that is really unique and unexpected. These are very compact, blue, luminous sources. They look exactly like you would expect a supermassive black hole to look in the end stages after it has quenched all of the star formation in a galaxy. This is evolving into a passive elliptical galaxy, yet we have found a lot of cold gas in these as well. These are the population that I’m calling ‘cold quasars.’”
The KU astrophysicist suspected the “cold quasars” in her survey represented a brief period yet to be recognized in the end-phases of a galaxy’s life span — in terms of a human life, the fleeting “cold quasar” phase may something akin to a galaxy’s retirement party.
“These galaxies are rare because they’re in a transition phase — we’ve caught them right before star formation in the galaxy is quenched, and this transition period should be very short,” she said.
Kirkpatrick first identified the objects of interest in an area of the Sloan Digital Sky Survey, the most detailed digital map of the universe available. In an area dubbed “Stripe 82,” Kirkpatrick and her colleagues were able to visually identify quasars.
“Then we went over this area with the XMM-Newton telescope and surveyed it in the X-ray,” she said. “X-rays are the key signature of growing black holes. From there, we surveyed it with the Herschel Space Telescope, a far-infrared telescope, which can detect dust and gas in the host galaxy. We selected the galaxies that we could find in both the X-ray and in the infrared.”
The KU researcher said her findings give scientists new understanding and detail of how the quenching of star formation in galaxies proceeds and overturn presumptions about quasars.
“We already knew quasars go through a dust-obscured phase,” Kirkpatrick said. “We knew they go through a heavily shrouded phase where dust is surrounding the supermassive black hole. We call that the red quasar phase. But now, we’ve found this unique transition regime that we didn’t know before. Before, if you told someone you had found a luminous quasar that had a blue optical color — but it still had a lot of dust and gas in it, and a lot of star formation — people would say, ‘No, that’s not the way these things should look.’”
Next, Kirkpatrick hopes to determine if the “cold quasar” phase happens to a specific class of galaxies or every galaxy.
“We thought the way these things proceed was you have a growing black hole, it’s enshrouded by dust and gas, it begins to blow that material out,” she said.  “Then it becomes a luminous blue object. We assumed when it blew out its own gas, it would blow out its host gas as well. But it seems with these objects, that’s not the case. These have blown out their own dust — so we see it as a blue object — but they haven’t yet blown out all of the dust and gas in the host galaxies. This is a transition phase, let’s say of 10 million years. In universal timescales, that’s really short — and it’s hard to catch this thing. We’re doing what we call a blind survey to find objects we weren’t looking for. And by finding these objects, yes, it could imply that this happens to every galaxy.”
Kirkpatrick collected data through 2015 with the XMM-Newton Telescope, a high-throughput X-ray telescope operated by the European Space Agency. Her work is part of a collaboration called the Accretion History of AGN (headed by astrophysicist Meg Urry of Yale University) that assembles archival data and carries out a multiwavelength analysis.
Kirkpatrick’s colleagues on this and related work include KU’s Brandon Coleman and Michael Estrada, Urry and Tonima Ananna of Yale University, Dave Sanders of the Institute for Astronomy in Hawaii, Jane Turner of the University of Maryland-Baltimore County, Stephanie LaMassa of the Space Telescope Science Institute and Eilat Glikman of Middlebury College. The work is supported by NASA under award No. 80NSSC18K0418 to Yale University and the National Science Foundation under Grant No. AST-1715512.

Monday, June 17, 2019

Big Bang theory wrong? Does universe exist inside a blackhole?

Until now, scientists believe that the universe in which the Milky Way exists had formed billions of years ago after a Big Bang. The universe's trait of singularity is one of the main reason that substantiates this theory, but now, a team of experimental scientists has suggested that black holes also shares this singularity trait. As per these scientists, the universe exists beyond the event horizon of a huge higher dimensional black hole that might have present in the cosmos since the beginning of time.
This new research conducted by a team of radical astrophysicists at Canada's University of Waterloo suggested that we might be living in a four-dimensional black hole which was formed by the collapse of a five-dimensional star.
''This was an idea that came up around four years ago with Niayesh Afshordi, another professor at Waterloo. The basic idea was that maybe the singularity of the universe is like the singularity at the centre of a black hole. The idea was in some sense motivated by trying to unify the notion of singularity, or what is incompleteness in general relativity between black holes and cosmology. And so out of that came the idea that the Big Bang would be analogous to the formation of a black hole, but kind of in reverse," said Robert Mann who led the research, Express.co.uk reports
After applying laws of string theory, scientists suggested that the universe in which we live in might be just a three-dimensional world trapped inside a membrane of four dimensions.A few weeks back, Louise Riofrio, a former NASA scientist had revealed that a black hole could be present at the centre of the earth. Riofrio made these remarks while talking to Blake Cousins, a conspiracy theorist duo who runs the popular YouTube channel 'Third Phase of Moon'.
After suggesting this bizarre theory, the former NASA scientist also added that more studies on this black hole within the earth could result in the production of free energy. She even added that time travel may happen in the future, as the speed of light changes over the course of time.

Thursday, June 6, 2019

Chandra Detects a Coronal Mass Ejection From Another Star

This artist's illustration depicts a coronal mass ejection, or CME, which involves a large-scale expulsion of material, and have frequently been observed on our Sun. A new study using the Chandra X-ray Observatory detected a CME from a star other than our own for the first time, providing a novel insight into these powerful phenomena. As the name implies these events occur in the corona, which is the outer atmosphere of a star.
This "extrasolar" CME was seen emanating from a star called HR 9024, which is located about 450 light years from Earth. This represents the first time that researchers have thoroughly identified and characterized a CME from a star other than our Sun. This event was marked by an intense flash of X-rays followed by the emission of a giant bubble of plasma, i.e., hot gas containing charged particles.

Scientist discovered a Cold Quasar , A new stage of Galaxy Death.

LAWRENCE — At the 234th meeting of the American Astronomical Society in St. Louis, Allison Kirkpatrick, assistant professor of physics &a...